Geometrically Constructed Bases for Homology of Non-Crossing Partition Lattices

نویسنده

  • Aisling Kenny
چکیده

For any finite, real reflection group W , we construct a geometric basis for the homology of the corresponding non-crossing partition lattice. We relate this to the basis for the homology of the corresponding intersection lattice introduced by Björner and Wachs in [4] using a general construction of a generic affine hyperplane for the central hyperplane arrangement defined by W .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrically Constructed Bases for Homology of Partition Lattices of Types A, B and D

We use the theory of hyperplane arrangements to construct natural bases for the homology of partition lattices of types A, B and D. This extends and explains the “splitting basis” for the homology of the partition lattice given in [20], thus answering a question asked by R. Stanley. More explicitly, the following general technique is presented and utilized. Let A be a central and essential hype...

متن کامل

an 2 00 4 GEOMETRICALLY CONSTRUCTED BASES FOR HOMOLOGY OF PARTITION LATTICES OF TYPES

We use the theory of hyperplane arrangements to construct natural bases for the homology of partition lattices of types A, B and D. This extends and explains the " splitting basis " for the homology of the partition lattice given in [19], thus answering a question asked by R. Stanley. More explicitly, the following general technique is presented and utilized. Let A be a central and essential hy...

متن کامل

A basis for the non-crossing partition lattice top homology

We find a basis for the top homology of the non-crossing partition lattice Tn . Though Tn is not a geometric lattice, we are able to adapt techniques of Björner (A. Björner, On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107–128) to find a basis with Cn−1 elements that are in bijection with binary trees. Then we analyze the action of the dihedral group on this basis.

متن کامل

A degree bound for the Graver basis of non-saturated lattices

Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...

متن کامل

Crossings and Nestings in Set Partitions of Classical Types

We study bijections { Set partitions of type X } −̃→ { Set partitions of type X } for X ∈ {A,B,C,D}, which preserve openers and closers. In types A, B, and C, they interchange • either the number of crossings and of nestings, • or the cardinalities of a maximal crossing and of a maximal nesting. In type D, the results are obtained only in the case of non-crossing and nonnesting set partitions. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009